HomeAbout

SIGN IN   Advanced Search










 
Browse Illustration
Ubiquitination, Protein Turnover, and Long-Term Synaptic Plasticity

For at least half a century, alteration of synaptic strength through growth at specific nerve terminals has been favored as the mechanism underlying long-term changes in behavior and synaptic plasticity. Although new proteins for synapses can either be synthesized locally or transported from the cell body, recent work on the postsynaptic element (dendritic spines) of cortical excitatory synapses indicates that transmission can also be modified by controlling the density of α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptors (AMPARs) in the postsynaptic density (PSD). This regulation is mediated by mono-ubiquitination, which governs turnover of AMPAR subunits by determining whether the endocytosed subunits are sent to lysosomes to be degraded or recycled back to the membrane by exocytosis. Also important is activity-dependent multi-ubiquitination and degradation of proteins that make up the scaffolding complexes that confine receptors to the PSD.

Rate this Resource:
1 = not useful, 5 = very useful

Please be the first to rate this resource.


Subscribe and
View Resource

Classifications


Resource Type: Diagram, Illustration, Journal article/Issue, Review
Audience Level: Undergraduate upper division 15-16, Graduate, Professional (degree program)

Author and Copyright


Authors and Editors: James H. Schwartz of Center for Neurobiology and Behavior, Columbia University
Publisher: American Association for the Advancement of Science
Format: application/pdf, image/gif, image/jpeg, text/html
Copyright and other restrictions: Yes
Cost: Yes

Comments


» Sign In or register to post comments.


Collection:
STKE/Science Signaling


     
   

SITE MAP | CONTACT | POLICIES

Triple A S National Science Foundation Naitonal Science Digital Library Pathway
Funded by the individual BEN Collaborators and grants from the
National Science Foundation [DUE 0085840 / DUE 0226185 / DUE 0532797 / DUE 0734995]

This website is a National Science Digital Library (NSDL) Pathway.
Copyright © 2019. American Association for the Advancement of Science. All Rights Reserved.