HomeAbout

SIGN IN   Advanced Search










 
Browse Illustration
Excitation-Transcription Coupling: Signaling by Ion Channels to the Nucleus

Changes in the concentration of intracellular Ca2+ ([Ca2+]i) in response to various stimuli play a role in regulating numerous cellular processes, including the activation of gene expression. In neurons, the extraordinary diversity of the response to Ca2+ signaling depends on the location, intensity, and duration of the Ca2+ transient. Interestingly, Ca2+-dependent gene transcription appears to be sensitive both to increases in nuclear Ca2+, which occur after relatively intense stimuli, and to highly localized increases in Ca2+ near the sites of Ca2+ influx. Activation of intracellular signaling pathways by specific types of Ca2+ channels depends on localization of specific Ca2+ receptors close to the channel mouth. The dual regulation of signaling pathways by Ca2+ near channels and in the nucleus may permit neurons to precisely tailor transcriptional activation to specific types of electrical or chemical stimuli and at the same time ensure that only robust stimuli that generate nuclear Ca2+ elevations are converted into long-term changes in gene expression.

Rate this Resource:
1 = not useful, 5 = very useful

Please be the first to rate this resource.


Subscribe and
View Resource

Classifications


Resource Type: Diagram, Illustration, Journal article/Issue, Review
Audience Level: Undergraduate upper division 15-16, Graduate, Professional (degree program)

Author and Copyright


Authors and Editors: Ricardo Dolmetsch of Department of Molecular Pharmacology, Stanford University School of Medicine
Publisher: American Association for the Advancement of Science
Format: application/pdf, image/gif, image/jpeg, text/html
Copyright and other restrictions: Yes
Cost: Yes

Comments


» Sign In or register to post comments.


Collection:
STKE/Science Signaling


     
   

SITE MAP | CONTACT | POLICIES

Triple A S National Science Foundation Naitonal Science Digital Library Pathway
Funded by the individual BEN Collaborators and grants from the
National Science Foundation [DUE 0085840 / DUE 0226185 / DUE 0532797 / DUE 0734995]

This website is a National Science Digital Library (NSDL) Pathway.
Copyright © 2019. American Association for the Advancement of Science. All Rights Reserved.