HomeAbout

SIGN IN   Advanced Search










 
Browse Illustration
Mitogen-Activated Protein Kinase Activation in UV-Induced Signal Transduction

Sunlight is most likely the main cause of skin cancer, which is the most common human cancer. Solar radiation is categorized by wavelength into ultraviolet C (UVC, wavelength 180 to 280 nm), ultraviolet B (UVB, 280 to 320 nm), and ultraviolet A (UVA) regions (UVA I, 340 to 400 nm; UVA II, 320 to 340 nm). All UV spectra have been linked to cancer in experimental animal models. However, the physiologic relevance of UVC may be dubious because all of the UVC radiation is absorbed by the ozone layer of Earth's atmosphere. UV radiation at Earth's surface consists of 1 to 10% UVB and 90 to 99% UVA and can penetrate human skin, making it the primary target for UV-induced damage and cancer. UV exposure can result in direct or indirect DNA damage, depending on the wavelength and exposure time. Even though DNA damage is a primary initiator in UV-induced skin carcinogenesis, the mechanism behind the tumor-promoting ability of UV is unclear. The assumption in the past was that the mechanisms of UV-stimulated tumor promotion could be based on studies of UVC-induced signal transduction, because the effects were assumed to be similar for all wavelengths of UV. However, accumulating evidence suggests that the cellular responses produced by UV irradiation are likely to be wavelength-dependent. UV activates various signaling pathways that are either oncogenic or protective or both. Many of these pathways are mediated primarily through signaling cascades involving mitogen-activated protein kinases (MAPKs), resulting in the modification of transcription factors such as activator protein-1, which can lead to skin cancer. In light of rising public concern over the increased incidence of skin cancer, this review focuses on the mechanistic data supporting a role for MAPKs in UV-stimulated skin carcinogenesis. Progress in understanding the mechanisms of UV-induced signal transduction could lead to the use of these protein kinases as specific targets for the prevention and control of skin cancer.

Rate this Resource:
1 = not useful, 5 = very useful

Please be the first to rate this resource.


Subscribe and
View Resource

Classifications


Resource Type: Bibliography, Diagram, Illustration, Journal article/Issue, Review, Table
Audience Level: Undergraduate upper division 15-16, Graduate, Professional (degree program)

Author and Copyright


Authors and Editors: Ann M. Bode of The Hormel Institute, University of Minnesota, Zigang Dong of The Hormel Institute, University of Minnesota
Publisher: American Association for the Advancement of Science
Format: application/pdf, image/gif, image/jpeg, text/html
Copyright and other restrictions: Yes
Cost: Yes

Comments


» Sign In or register to post comments.


Collection:
STKE/Science Signaling


     
   

SITE MAP | CONTACT | POLICIES

Triple A S National Science Foundation Naitonal Science Digital Library Pathway
Funded by the individual BEN Collaborators and grants from the
National Science Foundation [DUE 0085840 / DUE 0226185 / DUE 0532797 / DUE 0734995]

This website is a National Science Digital Library (NSDL) Pathway.
Copyright © 2019. American Association for the Advancement of Science. All Rights Reserved.