SIGN IN   Advanced Search

Browse Illustration
How ITAMs Inhibit Signaling

Immunoreceptor tyrosine-based activation motifs (ITAMs) are used by multiple receptors to activate immune cells. However, ITAM-associated receptors can have paradoxically inhibitory effects, which have been implicated in regulation of inflammatory responses, but mechanisms of inhibitory signaling are poorly understood. New evidence shows that low avidity ligation of the ITAM-associated immunoglobulin A receptor FcαRI (transient engagement of small numbers of FcαRIs) results in translocation of FcαRI and the associated inhibitory Src homology 2 (SH2) domain–containing phosphatase–1 (SHP-1) to membrane lipid rafts. Subsequent ligation of activating receptors results in their colocalization with FcαRI and SHP-1 and trafficking to an inhibitory intracellular compartment termed the inhibisome. Thus, ITAM suppressive signals subvert the activating function of rafts to promote incorporation of receptors into supramolecular domains where signaling molecules are deactivated by SHP-1.

Rate this Resource:
1 = not useful, 5 = very useful

Please be the first to rate this resource.

Subscribe and
View Resource


Resource Type: Bibliography, Diagram, Illustration, Journal article/Issue, Review
Audience Level: Undergraduate upper division 15-16, Graduate, Professional (degree program)

Author and Copyright

Authors and Editors: Lionel B. Ivashkiv of Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences
Publisher: American Association for the Advancement of Science
Format: application/pdf, image/gif, image/jpeg, text/html
Copyright and other restrictions: Yes
Cost: Yes


» Sign In or register to post comments.

STKE/Science Signaling



Triple A S National Science Foundation Naitonal Science Digital Library Pathway
Funded by the individual BEN Collaborators and grants from the
National Science Foundation [DUE 0085840 / DUE 0226185 / DUE 0532797 / DUE 0734995]

This website is a National Science Digital Library (NSDL) Pathway.
Copyright © 2019. American Association for the Advancement of Science. All Rights Reserved.