HomeAbout

SIGN IN   Advanced Search










 
Browse Illustration
Adaptive Recognition by Nucleic Acid Aptamers

Nucleic acid molecules play crucial roles in diverse biological processes including the storage, transport, processing, and expression of the genetic information. Nucleic acid aptamers are selected in vitro from libraries containing random sequences of up to a few hundred nucleotides. Selection is based on the ability to bind ligand molecules with high affinity and specificity. Three-dimensional structures have been determined at high resolution for a number of aptamers in complex with their cognate ligands. Structures of aptamer complexes reveal the key molecular interactions conferring specificity to the aptamer-ligand association, including the precise stacking of flat moieties, specific hydrogen bonding, and molecular shape complementarity. These basic principles of discriminatory molecular interactions in aptamer complexes parallel recognition events central to many cellular processes involving nucleic acids.

Rate this Resource:
1 = not useful, 5 = very useful

Please be the first to rate this resource.


View Free
Resource

Classifications


Resource Type: Journal article/Issue, Illustration, Review
Audience Level: Undergraduate lower division 13-14, Undergraduate upper division 15-16, Graduate, Professional (degree program), Continuing education

Author and Copyright


Authors and Editors: Thomas Hermann of Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, Dinshaw Patel of Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center
Publisher: AAAS
Format: text/html
Copyright and other restrictions: Yes
Cost: No

Comments


» Sign In or register to post comments.


Collection:
American Association for the Advancement of Science


     
   

SITE MAP | CONTACT | POLICIES

Triple A S National Science Foundation Naitonal Science Digital Library Pathway
Funded by the individual BEN Collaborators and grants from the
National Science Foundation [DUE 0085840 / DUE 0226185 / DUE 0532797 / DUE 0734995]

This website is a National Science Digital Library (NSDL) Pathway.
Copyright © 2019. American Association for the Advancement of Science. All Rights Reserved.