HomeAbout

SIGN IN   Advanced Search










 
Browse Illustration
Molecular Aspects of the Cellular Activities of ADP-Ribosylation Factors

The adenosine diphosphate-ribosylation factor (Arf) proteins, first identified as cofactors for cholera toxin-catalyzed adenosine diphosphate-ribosylation of Gs, are a family of guanosine triphosphate-binding proteins that regulate membrane traffic and the actin cytoskeleton. Arfs function both constitutively within the secretory pathway and as targets of signal transduction in the cell periphery. Arf activity is in part mediated by binding and recruitment of vesicle coat proteins. Arf proteins also bind to and activate phospholipase D and phosphatidylinositol 4-phosphate 5-kinase, producing phosphatidic acid and phosphatidylinositol 4,5-bisphosphate, respectively. These two lipids contribute to the effects of Arf on membrane traffic and the actin cytoskeleton. In addition, phosphatidic acid and phosphatidylinositol 4,5-bisphosphate are involved in the regulation of Arf, interacting with both guanine nucleotide exchange factors and guanosine triphosphatase-activating proteins. Additional Arf-binding proteins have been identified through two-hybrid screens. The molecular mechanisms by which Arf-binding proteins and phospholipids contribute to Arf's physiologic functions are being discovered. Abbreviations: Arf, ADP-ribosylation factor; BFA, brefeldin A; COP, coat protein complex; FA, focal adhesion; GAP, GTPase-activating protein; GEF, guanine nucleotide exchange factor; PA, phosphatidic acid; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol 3,4,5-trisphosphate.

Rate this Resource:
1 = not useful, 5 = very useful

Please be the first to rate this resource.


Subscribe and
View Resource

Classifications


Resource Type: Bibliography, Diagram, Illustration, Journal article/Issue, Review, Table
Audience Level: Undergraduate upper division 15-16, Graduate, Professional (degree program)

Author and Copyright


Authors and Editors: Paul A. Randazzo of Division of Basic Sciences, National Cancer Institute, Zhongzhen Nie of Division of Basic Sciences, National Cancer Institute, Koichi Miura of Division of Basic Sciences, National Cancer Institute, Victor W. Hsu of Brigham and Women's Hospital, Harvard Medical School
Publisher: American Association for the Advancement of Science
Format: application/pdf, image/gif, image/jpeg, text/html
Copyright and other restrictions: Yes
Cost: Yes

Comments


» Sign In or register to post comments.


Collection:
STKE/Science Signaling


     
   

SITE MAP | CONTACT | POLICIES

Triple A S National Science Foundation Naitonal Science Digital Library Pathway
Funded by the individual BEN Collaborators and grants from the
National Science Foundation [DUE 0085840 / DUE 0226185 / DUE 0532797 / DUE 0734995]

This website is a National Science Digital Library (NSDL) Pathway.
Copyright © 2019. American Association for the Advancement of Science. All Rights Reserved.