HomeAbout

SIGN IN   Advanced Search










 
Browse Illustration
Tumbling, an Interactive Way to Move Forward

The migration of Drosophila border cells has become a powerful model with which to genetically identify guidance cues that control the directed migration of a group of interconnected cells. During oogenesis, border cells delaminate from an epithelial layer and move collectively toward the oocyte. In vivo observation has been added to the impressive experimental toolkit available to study border cell migration. These studies reveal two previously unknown migratory behaviors: one in which cells within the border cell cluster constantly change their position, and another called "tumbling," by which the entire border cell cluster rotates forward. Unexpectedly, the same receptor tyrosine kinases control these different modes of migration through separate downstream pathways. An early mode is mediated by the actin regulatory proteins ELMO and Mbc and resembles cellular polarization during individual cell migration; whereas during a later phase, communication between cells, facilitated by mitogen-activated protein kinase and phospholipase C–γ, organizes the polarity of the entire cluster.

Rate this Resource:
1 = not useful, 5 = very useful

Please be the first to rate this resource.


Subscribe and
View Resource

Classifications


Resource Type: Bibliography, Diagram, Illustration, Journal article/Issue, Review
Audience Level: Undergraduate upper division 15-16, Graduate, Professional (degree program)

Author and Copyright


Authors and Editors: Hiroko Sano of Howard Hughes Medical Institute and the Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, Sara Ricardo of Howard Hughes Medical Institute and the Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, Ruth Lehmann of Howard Hughes Medical Institute and the Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine
Publisher: American Association for the Advancement of Science
Format: application/pdf, image/gif, image/jpeg, text/html
Copyright and other restrictions: Yes
Cost: Yes

Comments


» Sign In or register to post comments.


Collection:
STKE/Science Signaling


     
   

SITE MAP | CONTACT | POLICIES

Triple A S National Science Foundation Naitonal Science Digital Library Pathway
Funded by the individual BEN Collaborators and grants from the
National Science Foundation [DUE 0085840 / DUE 0226185 / DUE 0532797 / DUE 0734995]

This website is a National Science Digital Library (NSDL) Pathway.
Copyright © 2019. American Association for the Advancement of Science. All Rights Reserved.