HomeAbout

SIGN IN   Advanced Search










 
Browse Illustration
Parsing the Motion of Single Molecules: A Novel Algorithm for Deconvoluting the Dynamics of Individual Receptors at the Cell Surface

To truly understand signal transduction, we will ultimately need to understand the dynamics and kinetics of individual proteins as they perform their functions in a single cell. Groundbreaking advances in single-molecule biophysics now allow us to follow the motion of many individual proteins on the cell surface with the use of fluorescent probes, such as quantum dots. However, discriminating the directed movement of single molecules from their natural Brownian motion remains a challenge. A recent paper provides a powerful statistical approach for distinguishing periods of directed motion of individual γ-aminobutyric acid (GABA) receptors from periods during which they undergo Brownian motion. This new methodology should help single-molecule researchers determine the dynamics of individual proteins participating in signaling cascades.

Rate this Resource:
1 = not useful, 5 = very useful

Please be the first to rate this resource.


Subscribe and
View Resource

Classifications


Resource Type: Bibliography, Diagram, Illustration, Journal article/Issue, Review
Audience Level: Undergraduate upper division 15-16, Graduate, Professional (degree program)

Author and Copyright


Authors and Editors: Indraneel Ghosh of University of Arizona, Tucson, Mary J. Wirth of University of Arizona, Tucson
Publisher: American Association for the Advancement of Science
Format: application/pdf, image/gif, image/jpeg, text/html
Copyright and other restrictions: Yes
Cost: Yes

Comments


» Sign In or register to post comments.


Collection:
STKE/Science Signaling


     
   

SITE MAP | CONTACT | POLICIES

Triple A S National Science Foundation Naitonal Science Digital Library Pathway
Funded by the individual BEN Collaborators and grants from the
National Science Foundation [DUE 0085840 / DUE 0226185 / DUE 0532797 / DUE 0734995]

This website is a National Science Digital Library (NSDL) Pathway.
Copyright © 2019. American Association for the Advancement of Science. All Rights Reserved.