HomeAbout

SIGN IN   Advanced Search










 
Browse Illustration
Hydrogen Peroxide: A Key Messenger That Modulates Protein Phosphorylation Through Cysteine Oxidation

Ligand-receptor interactions can generate the production of hydrogen peroxide (H2O2) in cells, the implications of which are becoming appreciated. Fluctuations in H2O2 levels can affect the intracellular activity of key signaling components including protein kinases and protein phosphatases. Rhee et al. discuss recent findings on the role of H2O2 in signal transduction. Specifically, H2O2 appears to oxidize active site cysteines in phosphatases, thereby inactivating them. H2O2 also can activate protein kinases; however, although the mechanism of activation for some kinases appears to be similar to that of phosphatase inactivation (cysteine oxidation), it is unclear how H2O2 promotes increased activation of other kinases. Thus, the higher levels of intracellular phosphoproteins observed in cells most likely occur because of the concomitant inhibition of protein phosphatases and activation of protein kinases.

Rate this Resource:
1 = not useful, 5 = very useful

Please be the first to rate this resource.


Subscribe and
View Resource

Classifications


Resource Type: Bibliography, Diagram, Illustration, Journal article/Issue, Review
Audience Level: Undergraduate upper division 15-16, Graduate, Professional (degree program)

Author and Copyright


Authors and Editors: Sue Goo Rhee of National Institutes of Health, Bethesda, Yun Soo Bae of Center for Cell Signaling Research, Ewha Womans University, Seung-Rock Lee of National Institutes of Health, Bethesda, Jaeyul Kwon of National Institutes of Health, Bethesda
Publisher: American Association for the Advancement of Science
Format: application/pdf, image/gif, image/jpeg, text/html
Copyright and other restrictions: Yes
Cost: Yes

Comments


» Sign In or register to post comments.


Collection:
STKE/Science Signaling


     
   

SITE MAP | CONTACT | POLICIES

Triple A S National Science Foundation Naitonal Science Digital Library Pathway
Funded by the individual BEN Collaborators and grants from the
National Science Foundation [DUE 0085840 / DUE 0226185 / DUE 0532797 / DUE 0734995]

This website is a National Science Digital Library (NSDL) Pathway.
Copyright © 2019. American Association for the Advancement of Science. All Rights Reserved.