SIGN IN   Advanced Search

Browse Illustration
Studies of SARM1 Uncover Similarities Between Immune and Neuronal Responses to Danger

Toll–interleukin-1 receptor (TIR) domain–containing proteins are best known as critical players in vertebrate immune defense against pathogens. Four of the five members of this family are required for the activation of immune cells downstream of the engagement of Toll-like receptors (TLRs) by microbial molecules. Mice deficient in any one of these four molecules show greatly enhanced susceptibility to specific classes of pathogens. However, the physiological function of the fifth mammalian protein, sterile alpha and TIR motif–containing 1 [SARM1, also known as myeloid differentiation marker 88-5 (MyD88-5)], has remained elusive. Now, the study of the SARM1 reporter and SARM1-deficient mice has uncovered an unanticipated function of this molecule in the regulation of neuronal survival in response to metabolic stress. Together with pioneering observations on the functions of TIR-1, the worm ortholog of SARM1, and other reports on the role of TLRs in neuronal development and responses to injury in mammals, these exciting results suggest that further studies of SARM1-deficient animals may uncover unexpected similarities between the ways in which neurons and immune cells sense and respond to danger.

Rate this Resource:
1 = not useful, 5 = very useful

Please be the first to rate this resource.

Subscribe and
View Resource


Resource Type: Bibliography, Diagram, Illustration, Journal article/Issue, Review
Audience Level: Undergraduate upper division 15-16, Graduate, Professional (degree program)

Author and Copyright

Authors and Editors: Marc Dalod of Universite de la Mediterranee, Centre d'Immunologie de Marseille-Luminy
Publisher: American Association for the Advancement of Science
Format: application/pdf, image/gif, image/jpeg, text/html
Copyright and other restrictions: Yes
Cost: Yes


» Sign In or register to post comments.

STKE/Science Signaling



Triple A S National Science Foundation Naitonal Science Digital Library Pathway
Funded by the individual BEN Collaborators and grants from the
National Science Foundation [DUE 0085840 / DUE 0226185 / DUE 0532797 / DUE 0734995]

This website is a National Science Digital Library (NSDL) Pathway.
Copyright © 2019. American Association for the Advancement of Science. All Rights Reserved.