SIGN IN   Advanced Search

Browse Illustration
Context-Dependent Activation or Inhibition of Wnt-{beta}-Catenin Signaling by Kremen

Wnt-β-catenin signaling controls critical events in metazoan development, and its dysregulation leads to cancers and developmental disorders. Binding of a Wnt ligand to its transmembrane co-receptors Frizzled (Fz) and low-density lipoprotein (LDL) receptor–related protein (LRP) 5 or LRP6 inhibits the degradation of the transcriptional coactivator β-catenin, which translocates to the nucleus to regulate gene expression. The secreted protein Dickkopf1 (Dkk1) inhibits Wnt signaling by binding to LRP5 and LRP6 and blocking their interaction with Wnt and Fz. Kremen 1 and 2 (Krm1 and 2, collectively termed Krms) are single-pass transmembrane Dkk1 receptors that synergize with Dkk1 to inhibit Wnt signaling by promoting the endocytosis of LRP5 and LRP6. A study now suggests that Krms, in the absence of Dkk1, potentiate Wnt signaling by maintaining LRP5 and LRP6 at the plasma membrane. It is proposed that the absence or presence of Dkk1 determines whether Krms will activate or inhibit Wnt-β-catenin signaling, respectively. Here, we speculate that the proposed context-dependent positive and negative roles for Krms could promote biphasic Wnt signaling in response to a shallow gradient of Dkk1, resulting in the generation of precise and robust borders between cells during development. Identification of a context-dependent role for Krms in Wnt-β-catenin signaling offers insight into the mechanism of Wnt signaling and has important developmental implications.

Rate this Resource:
1 = not useful, 5 = very useful

Please be the first to rate this resource.

Subscribe and
View Resource


Resource Type: Bibliography, Diagram, Illustration, Journal article/Issue, Review
Audience Level: Undergraduate upper division 15-16, Graduate, Professional (degree program)

Author and Copyright

Authors and Editors: Christopher S. Cselenyi of Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Ethan Lee of Department of Cell and Developmental Biology, Vanderbilt University Medical Center
Publisher: American Association for the Advancement of Science
Format: application/pdf, image/gif, image/jpeg, text/html
Copyright and other restrictions: Yes
Cost: Yes


» Sign In or register to post comments.

STKE/Science Signaling



Triple A S National Science Foundation Naitonal Science Digital Library Pathway
Funded by the individual BEN Collaborators and grants from the
National Science Foundation [DUE 0085840 / DUE 0226185 / DUE 0532797 / DUE 0734995]

This website is a National Science Digital Library (NSDL) Pathway.
Copyright © 2019. American Association for the Advancement of Science. All Rights Reserved.