SIGN IN   Advanced Search

Browse Illustration
TRPM7: Channeling the Future of Cellular Magnesium Homeostasis?

A recent paper by Schmitz and colleagues provides persuasive evidence that the ion channel transient receptor potential melastatin 7 (TRPM7) may be the long-sought regulator of magnesium (Mg) homeostasis in mammalian cells. This finding is not unexpected, because TRPM channels contain a kinase domain that allows them to participate in signal transduction pathways and regulatory networks. However, these studies introduce an exciting new twist into our understanding of Mg homeostasis; TRPM7 facilitates Mg entry into the cell, whereas other putative Mg transporters apparently operate in the opposite direction. By combining electrophysiological, biochemical, and genetic approaches, Schmitz and colleagues characterized most of the key features that demonstrate a well-defined and biologically plausible regulator of Mg homeostasis. TRPM7 genetics are well in hand, its regulation by intracellular free Mg2+ unravels the mechanisms of regulatory feedback loops, and its kinase domain modulates its sensitivity to free Mg2+. These findings are discussed in light of the indirect and descriptive information we had about Mg regulation before this rigorous characterization of TRPM7 brought it to the center of the Mg stage. Although the molecular events downstream of TRPM7 phosphorylation and dephosphorylation await in-depth elucidation, these results open up exciting perspectives in Mg research and may provide a much-needed tool with which to reexamine the role of Mg in cell proliferation and other important pathophysiologic events. Likewise, these findings will offer guidelines for research on disease states that are characterized by Mg imbalance.

Rate this Resource:
1 = not useful, 5 = very useful

Please be the first to rate this resource.

Subscribe and
View Resource


Resource Type: Diagram, Illustration, Journal article/Issue, Review
Audience Level: Undergraduate upper division 15-16, Graduate, Professional (degree program)

Author and Copyright

Authors and Editors: Federica I. Wolf of Faculty of Medicine, Institute of General Pathology and Giovanni XXIII Cancer Research Centre
Publisher: American Association for the Advancement of Science
Format: application/pdf, image/gif, image/jpeg, text/html
Copyright and other restrictions: Yes
Cost: Yes


» Sign In or register to post comments.

STKE/Science Signaling



Triple A S National Science Foundation Naitonal Science Digital Library Pathway
Funded by the individual BEN Collaborators and grants from the
National Science Foundation [DUE 0085840 / DUE 0226185 / DUE 0532797 / DUE 0734995]

This website is a National Science Digital Library (NSDL) Pathway.
Copyright © 2019. American Association for the Advancement of Science. All Rights Reserved.