HomeAbout

SIGN IN   Advanced Search










 
Browse Illustration
Cold Shock Response and Adaptation at Near-Freezing Temperature in Microorganisms

Microorganisms that naturally encounter sharp temperature shifts must develop strategies for responding and adapting to these shifts. Escherichia coli, which are adapted to living at both warm temperatures inside animals and cooler ambient temperatures, respond to low temperatures (10° to 15°C) by adjusting membrane lipid composition and increasing the production of proteins that act as "RNA chaperones" required for transcription and translation and proteins that facilitate ribosomal assembly. In contrast, yeast, which are adapted to cooler temperatures, show a relatively minor cold shock response after temperature shifts from 30° to 10°C but respond with a dramatic increase in the synthesis of trehalose and a heat shock protein when exposed to freezing or near-freezing temperatures. This emphasizes the fact that different groups of microorganisms exhibit distinct types of cold shock responses.

Rate this Resource:
1 = not useful, 5 = very useful

Please be the first to rate this resource.


Subscribe and
View Resource

Classifications


Resource Type: Diagram, Illustration, Journal article/Issue, Review
Audience Level: Undergraduate upper division 15-16, Graduate, Professional (degree program)

Author and Copyright


Authors and Editors: Masayori Inouye of Department of Biochemistry, Robert Wood Johnson Medical School, Sangita Phadtare of Department of Biochemistry, Robert Wood Johnson Medical School
Publisher: American Association for the Advancement of Science
Format: application/pdf, image/gif, image/jpeg, text/html
Copyright and other restrictions: Yes
Cost: Yes

Comments


» Sign In or register to post comments.


Collection:
STKE/Science Signaling


     
   

SITE MAP | CONTACT | POLICIES

Triple A S National Science Foundation Naitonal Science Digital Library Pathway
Funded by the individual BEN Collaborators and grants from the
National Science Foundation [DUE 0085840 / DUE 0226185 / DUE 0532797 / DUE 0734995]

This website is a National Science Digital Library (NSDL) Pathway.
Copyright © 2019. American Association for the Advancement of Science. All Rights Reserved.