SIGN IN   Advanced Search

Browse Illustration
Arabidopsis Ethylene Signaling Pathway

In plants, ethylene gas functions as a potent endogenous growth regulator. In the model system Arabidopsis thaliana, the molecular mechanisms that underlie perception and transduction of the ethylene signal to the nucleus, where the transcription of hundreds of genes is altered, are being elucidated. In the current view, ethylene is sensed by a family of five receptors that show similarity to the bacterial two-component histidine kinases, and in plants function as negative regulators of the pathway. Binding of the ethylene gas turns off the receptors, resulting in the inactivation of another negative regulator of ethylene signaling, CTR1, a Raf-like protein kinase that directly interacts with the receptors. EIN2, a protein of unknown biochemical activity that functions as a positive regulator of the pathway, acts downstream of CTR. Derepression of EIN2 by ethylene upon disabling of the receptors and CTR1 leads to the activation of EIN3 and EIN3-like transcription factors. In the absence of ethylene, the levels of EIN3 protein are extremely low because of the function of two F-box-containing proteins, EBF1 and EBF2, that target EIN3 for proteosome-mediated degradation. In the presence of ethylene, the EIN3 protein accumulates in the nucleus and initiates a transcriptional cascade, resulting in the activation and repression of hundreds of genes. To date, the only empirically demonstrated direct target of EIN3 is the APETALA2 (AP2)-domain–containing transcription factor gene ERF1. The coregulation of ERF1 by another plant hormone, jasmonic acid, illustrates how a transcriptional cascade could be utilized in a combinatorial fashion to generate a large diversity of responses using a limited number of input signals. As new components and points of intersection with other pathways are identified, the Connections Map will be updated.

Rate this Resource:
1 = not useful, 5 = very useful

Please be the first to rate this resource.

View Free


Resource Type: Bibliography, Dataset, Diagram, Illustration, Journal article/Issue, Review
Audience Level: Undergraduate upper division 15-16, Graduate, Professional (degree program)

Author and Copyright

Authors and Editors: Anna N. Stepanova of Department of Genetics, North Carolina State University, Jose M. Alonso of Department of Genetics, North Carolina State University
Publisher: American Association for the Advancement of Science
Format: application/pdf, image/gif, image/jpeg, image/svg+xml, text/html
Copyright and other restrictions: Yes
Cost: No


» Sign In or register to post comments.

STKE/Science Signaling



Triple A S National Science Foundation Naitonal Science Digital Library Pathway
Funded by the individual BEN Collaborators and grants from the
National Science Foundation [DUE 0085840 / DUE 0226185 / DUE 0532797 / DUE 0734995]

This website is a National Science Digital Library (NSDL) Pathway.
Copyright © 2019. American Association for the Advancement of Science. All Rights Reserved.