SIGN IN   Advanced Search

Browse Illustration
Sensing Your Surroundings: How Transcription-Regulatory Networks of the Cell Discern Environmental Signals

Accumulating evidence indicates that cells differentially regulate parts of their biochemical networks in various environmental conditions. Two recent studies, focused on the yeast transcription-regulatory network, have identified the characteristics and some of the regulatory logic that defines such conditional regulation on a system level. But what is the underlying basis of such environment-dependent dynamic network utilization? We propose that with simultaneous changes in many environmental variables, cells detect and process the incoming pieces of information individually with the use of receptors and sensor transcription factors specialized to a given type of signal. In turn, transcriptional subnetworks affected by the activity of these proteins reassemble the processed signals deeper inside the network, ultimately resulting in the development of an integrated cellular response.

Rate this Resource:
1 = not useful, 5 = very useful

Please be the first to rate this resource.

Subscribe and
View Resource


Resource Type: Diagram, Illustration, Journal article/Issue, Review
Audience Level: Undergraduate upper division 15-16, Graduate, Professional (degree program)

Author and Copyright

Authors and Editors: Gabor Balazsi of Department of Pathology, University of Pittsburgh School of Medicine, Zoltan N. Oltvai of Department of Pathology, University of Pittsburgh School of Medicine
Publisher: American Association for the Advancement of Science
Format: application/pdf, image/gif, image/jpeg, text/html
Copyright and other restrictions: Yes
Cost: Yes


» Sign In or register to post comments.

STKE/Science Signaling



Triple A S National Science Foundation Naitonal Science Digital Library Pathway
Funded by the individual BEN Collaborators and grants from the
National Science Foundation [DUE 0085840 / DUE 0226185 / DUE 0532797 / DUE 0734995]

This website is a National Science Digital Library (NSDL) Pathway.
Copyright © 2019. American Association for the Advancement of Science. All Rights Reserved.