HomeAbout

SIGN IN   Advanced Search










 
Browse Illustration
Oxygen Sensing: Getting Pumped by Sterols

Oxygen plays a pivotal role in the maintenance of life for all eukaryotes, with the exception of strict anaerobes. Eukaryotes have developed mechanisms to sense and respond to decreased oxygen levels. How eukaryotes sense oxygen is still not fully understood. What is (or are) the oxygen sensor(s)? This question has vital physiological and pathophysiological implications, because all living aerobic organisms have adaptive mechanisms to maintain oxygen homeostasis. A recent report describes a novel eukaryotic oxygen-sensing mechanism in the fission yeast Schizosaccharomyces pombe, involving the depletion of sterols as a trigger to induce gene expression in response to decreased oxygen levels. It is not yet clear whether this mechanism is involved in the mammalian response to hypoxia, possibly in conjunction with activation of one or both of the hypoxia-inducible factor (HIF-1 or HIF-2) transcription factors.

Rate this Resource:
1 = not useful, 5 = very useful

Please be the first to rate this resource.


Subscribe and
View Resource

Classifications


Resource Type: Diagram, Illustration, Journal article/Issue, Review
Audience Level: Undergraduate upper division 15-16, Graduate, Professional (degree program)

Author and Copyright


Authors and Editors: Brooke M. Emerling of Department of Medicine, Northwestern University Medical School, Navdeep S. Chandel of Department of Medicine, Northwestern University Medical School
Publisher: American Association for the Advancement of Science
Format: application/pdf, image/gif, image/jpeg, text/html
Copyright and other restrictions: Yes
Cost: Yes

Comments


» Sign In or register to post comments.


Collection:
STKE/Science Signaling


     
   

SITE MAP | CONTACT | POLICIES

Triple A S National Science Foundation Naitonal Science Digital Library Pathway
Funded by the individual BEN Collaborators and grants from the
National Science Foundation [DUE 0085840 / DUE 0226185 / DUE 0532797 / DUE 0734995]

This website is a National Science Digital Library (NSDL) Pathway.
Copyright © 2019. American Association for the Advancement of Science. All Rights Reserved.