HomeAbout

SIGN IN   Advanced Search










 
Browse Review
Caspase-2: Vestigial Remnant or Master Regulator?

Caspase-2, the second mammalian caspase to be identified and the most evolutionarily conserved caspase, has eluded classification. The lack of a profound phenotype in the caspase-2–deficient mouse resulted in decreased interest in caspase-2 for many years. However, advances in the field, including the identification of a potential activation complex and the development of methods to detect active caspase-2, now illuminate our understanding of the function of this caspase. These studies suggest that caspase-2 induces death through two pathways. First, caspase-2 induces cell death independently of the mitochondrial pathway, in a manner similar to that of ced-3, a caspase in Caenorhabditis elegans. Second, caspase-2 also induces cell death upstream of the mitochondrial pathway. The choice of pathway may depend on the type of death stimulus. The placing of caspase-2 upstream and independent of mitochondrial dysfunction provides a potentially new therapeutic target for aberrant cell death.

Rate this Resource:
1 = not useful, 5 = very useful

Please be the first to rate this resource.


Subscribe and
View Resource

Classifications


Resource Type: Bibliography, Diagram, Illustration, Journal article/Issue, Review
Audience Level: Undergraduate upper division 15-16, Graduate, Professional (degree program)

Author and Copyright


Authors and Editors: Carol M. Troy of Columbia University College of Physicians and Surgeons, Departments of Pathology and Neurology, Elena M. Ribe of Columbia University College of Physicians and Surgeons, Departments of Pathology and Neurology
Publisher: American Association for the Advancement of Science
Format: application/pdf, image/gif, image/jpeg, text/html
Copyright and other restrictions: Yes
Cost: Yes

Comments


» Sign In or register to post comments.


Collection:
STKE/Science Signaling


     
   

SITE MAP | CONTACT | POLICIES

Triple A S National Science Foundation Naitonal Science Digital Library Pathway
Funded by the individual BEN Collaborators and grants from the
National Science Foundation [DUE 0085840 / DUE 0226185 / DUE 0532797 / DUE 0734995]

This website is a National Science Digital Library (NSDL) Pathway.
Copyright © 2018. American Association for the Advancement of Science. All Rights Reserved.